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Therole of the vertebrate retinain early vision is generally described by the efficient
coding hypothesis'? which predicts that the retina reduces the redundancy inherent
in natural scenes’ by discarding spatiotemporal correlations while preserving
stimulus information®. Itis unclear, however, whether the predicted decorrelation

and redundancy reductionin the activity of ganglion cells, the retina’s output
neurons, hold under gaze shifts, which dominate the dynamics of the natural visual
input®. We show here that species-specific gaze patterns in natural stimuli can drive
correlated spiking responses both in and across distinct types of ganglion cells in
marmoset as well as mouse retina. These concerted responses disrupt redundancy
reduction to signal fixation periods with locally high spatial contrast. Model-based
analyses of ganglion cell responses to natural stimuli show that the observed response
correlations follow from nonlinear pooling of ganglion cell inputs. Our results
indicate cell-type-specific deviations from efficient coding in retinal processing of

natural gaze shifts.

Natural visual scenes contain strong positive stimulus correlations
inboth space and time>. According to the prominent efficient coding
hypothesis'?, the retina’s function is to encode stimulus information
without wasting resources on signalling this inherent redundancy
of natural scenes. Thus, to reduce the redundancy, the retina should
decorrelate its output, the spiking activity of retinal ganglion cells, at
least as much as the intrinsic noise in the system permits while retain-
ing stimulus information*. In addition to this intuitive rationale,
the popularity of the efficient coding hypothesis is based on its suc-
cess in explaining characteristics of the early visual system, includ-
ing centre-surround receptive fields* and the emergence and spatial
organization of retinal cell types”°.

However, the decorrelation prediction of efficient coding has so far
onlybeen tested with stimuli that at most share some statistical similari-
tieswith natural scenes ™, such as staticimages, sometimesincluding
object movement. Instead, the natural retinal input is dynamically
structured by eye and head movements that rapidly shift the retinal
image’®. Such gaze shifts caninduce robust response transients at fixa-
tion onset in neurons at the early stages of the visual system®, thus
shaping the encoding of natural scenes. Here we therefore sought to
study whether retinal redundancy reduction and decorrelation hold
for natural stimuli that include gaze shifts and whether stimulus cor-
relations are efficiently discarded by the retina.

Redundancy in natural-video responses

Werecorded ganglion cell spiking activity fromisolated marmoset reti-
naswith multielectrode arraysinresponseto natural videos generated

by shifting photographic images according to natural gaze traces
(Fig. 1a). The traces had been measured from head-fixed marmosets
viewing natural scenes' and contained both saccades and fixational
eye movements. From the recordings, we functionally identified the
four numerically dominant ganglion cell types of the primate retina, ON
and OFF parasol cells, as well as ON and OFF midget cells, by their char-
acteristicresponse kinetics, receptive-field sizes and the tiling of visual
space by receptive fields of agiven type (Fig. 1c, Extended Data Fig. 1).

Natural videos generated strong and reliable responses (Fig. 1b),
which often displayed considerable correlations for pairs of neigh-
bouring cells of the same type (Fig. 1d). Especially ON parasol cells
frequently showed simultaneous firing-rate peaks (Fig. 1d, top). Cor-
respondingly, pairwise correlations for ON parasol cells were nearly as
high as the corresponding light-intensity correlation in the stimulus
(Fig.1e), thus showing almost no decorrelation. Thisincluded cell pairs
with neighbouring receptive fields (typically distances below approxi-
mately 300 pm), as well as across larger distances. By contrast, OFF
midget cells displayed a high degree of decorrelation (Fig. 1e), with
firing events of neighbouring cells often occurring for distinct fixations
(Fig.1d, bottom). Correlations for pairs of OFF parasol and ON midget
cells, respectively, lay between these two extremes. OFF parasol cells
displayed more decorrelation than their ON counterparts but were
more strongly correlated than OFF midget cells. Thus, the expected
decorrelation is not seen in all ganglion cell types but ranges from
strong decorrelation, as in OFF midget cells, to essentially no decor-
relation, asin ON parasol cells.

Substantial positive correlations were also found for pairs of parasol
cells with opposing contrast preference—that is, an ON cell and an
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Fig.1|Correlations and redundancy in primate ganglion cell responses to
natural videos. a, Marmoset-specific videos, generated by shifting natural
images accordingto gaze traces recorded fromhead-fixed marmosets. Each
image was presented for 1s as marked by bluelines. The receptive field ofa
sample ON parasol ganglion cellis overlaid on the sample images shown. b, Spike
raster of thesample ON parasol cell for 30 trialsin response to the stimulusin a.
¢, Receptive-field mosaic of simultaneously recorded ON parasol cells from the
peripheral marmosetretina, with the sample cell highlighted. d, Receptive
fields and firing-rate profiles of two neighbouring ON parasol cells (top) and
two neighbouring OFF midget cells (bottom) with resulting activity correlation
coefficients (corr.). e, Correlation coefficients for ganglion cell pairsunder the
natural video as afunction of receptive-field distance (number of pairs specified

OFF cell (Fig. 1f)—indicating acommon patternin the co-activation of
parasol cells within and across types. Pairs of ON and OFF midget
cells, onthe other hand, showed essentially no correlation or, at small
distances, negative correlation, as should be expected when one cell
responds to increases and the other to decreases in light intensity.
For the case of noiseless transmission channels, decorrelationis a
direct prediction of the efficient coding hypothesis*®, as any statistical
dependencies between the system’s output components reduce the
entropy of the joint output patterns and thus prevent the system from
using its full coding capacity. In the presence of intrinsic noise at the
system’sinput stage or during processing, acertain level of correlations
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inthefigure). Forreference, black lines show the correlation between stimulus
pixels.f,Samease, but for pairs of ON and OFF cells. g, Histograms of response
reliability under natural videos and white noise, measured by the coefficient of
determination between firing rates of even and odd repeats. Number of cells:
n=41/34/38/53 for ON parasol/OFF parasol/ON midget/OFF midget. Note that
moretrials for firing-rate evaluation were available under white noise, contributing
to higher reliability values as compared to natural videos. h, Fractional redundancy
asafunctionofreceptive-field distance for cell pairs of the same typeresponding
to the natural video (coloured traces) or white noise (grey). i, Relationship
between correlation and fractional redundancy. Fore,f,h,i, lines represent
binned averages for pairs at similar x coordinates (with 95% confidence intervals)
for simultaneously recorded cell pairs, and data are from three retinas.

in the output may help preserve information in accordance with effi-
cient coding*®, as correlated activity allows averaging to increase the
signal-to-noise ratio. However, under the present stimulation condi-
tions in the photopic range with natural contrast values well above
detection threshold, the retina canbe assumed in alow-noise regime,
as evident in the reliable spiking responses (Fig. 1b) with Fano factors
generally below unity over individual fixation periods (Extended Data
Fig.2e). Thus, averaging over cells offers minimal benefit for efficient
information transmission.

To further check whether the observed cell-type-specific correla-
tions could be consistent with compensating for noise, we measured



the response reliability for repeated presentations of the same video
sequence by the coefficient of determination between firing-rate pro-
files for even versus odd stimulus repeats. We found that responses
of parasol cells were at least as reliable as responses of midget cells.
In particular, ON parasol cells generally displayed the highest level of
reliability under natural stimulation among the four analysed types
(Fig.1g). Thus, the most strongly correlated cell type was also the most
reliable one, whichisinconsistent with theidea that correlations in para-
sol cellswould arise to counteract noise in the signals that they encode.

In principle, correlations could also contribute to efficient stimulus
encodingin the form of stimulus-independent so-called noise correla-
tions”*®, However, noise correlations were small in our data and typi-
cally negligible compared to stimulus-induced correlations (Extended
DataFig. 2a-c), thusindicating that correlations are not part of a syn-
ergistic encoding scheme, but imply redundancy". Note also that we
here measured correlations in trial-averaged firing rates and thereby
obtain ameasure that is largely independent of noise correlations.

The deficiency in decorrelation in parasol cells indicates that their
representation of natural scenes contains considerable redundancy.
To directly assess whether this is indeed the case, we evaluated the
fractional redundancy™? of agiven cell pair by quantifying the stimulus
information provided by the joint responses of the pair and relating
it to the single-cell information obtained from its constituent cells
(Extended Data Fig. 2d). The fractional redundancy is zero if cells
contribute independent information and takes positive values if the
information carried by a cell pair falls below the sum of the single-cell
information values, up to a maximum of unity if one of the cells adds
no new information. Indeed, we found that fractional redundancy
values could be substantial for our data, in particular for ON, but also
for OFF parasol cells at short distances, indicating that more than 20%
of single-cell information could be redundant (Fig. 1h). By contrast,
OFF midget cell pairs displayed much less and often no redundancy.
Moreover, for each cell type, the fractional redundancy was tightly
connected to the measured correlation values (Fig. 1i), confirming
response correlations as a source of redundancy. We also found that
the spatiotemporal structure of natural stimuliis essential for the high
redundancy values. Under arepeated presentation of spatiotemporal
white noise, all four ganglion cell types had consistently low redun-
dancy (Fig. 1h), which was also reflected in low cell-pair correlation
values (Fig. 1i).

Spatial contrast triggers correlations

The idea of retinal decorrelation is typically associated with the
centre-surround receptive fields of ganglion cells*. Yet these consid-
erations generally assume a linear receptive field that acts as a spatial
stimulus filter, whereas ganglion cells often display nonlinear process-
inginthereceptive field, which canlead to cell-type-specific sensitivity
to spatial contrast on spatial scales below the receptive-field size.
Suchspatial contrast, whichis high when edges or textures are present
in natural scenes, can particularly drive parasol cell responses in the
macaque retina®. We therefore sought to identify whether sensitivity to
spatial contrast directly influenced the pairwise response correlations.

In ON parasol cells, fixations with high spatial contrast led to stronger
responses that were also more correlated than for fixations with com-
parable lightintensity but low spatial contrast (Fig. 2a,b). These effects
also existed in OFF parasol and ON midget cells, albeit to alesser degree,
but not in OFF midget cells (Fig. 2b). For pairs of ON and OFF parasol
cells, we also observed stronger correlations for high-spatial-contrast
fixations, but not for pairs of ON and OFF midget cells (Fig. 2¢,d). Thus,
spatial stimulus structure can promote response correlations for cer-
tain cell pairs (Fig. 2e, top). This seems to be mediated by nonlinear
processing in ganglion cell receptive fields, as the same analysis with
predictions of linear-nonlinear (LN) models, fitted to the ganglion
cells and capturing the encoding properties of their linear receptive
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Fig.2|Spatial contrastinnatural videos leads to concerted responses
withinand across ganglion cell types of primate retina. a, Responses of two
neighbouring ON parasol cells to fixations with similar light intensity but either
high (top) or low spatial contrast (SC) (bottom). b, Partial correlations for each
celltype (mean = 95% confidence interval), separating the pairwise correlations
into contributions from fixation periods with high versus low spatial contrast.
c,Same as aforapair of ONand OFF parasol cells.d,Same asb, butbetween
types of different response polarity. e, Median differences between high- and
low-spatial-contrast partial correlations across types (top) and predicted
differences calculated with fitted LN models (bottom). Increases in correlation
duetospatial contrast were statistically significant (one-sided Wilcoxon sign-
rank test) for ON parasol (ONp, P=3.5x107%), OFF parasol (OFFp, P=8.1x107),
ONmidget (ONm, P=7.4 x10"°) and ON versus OFF parasol (OvOp, P=4.8 x107%°)
cell pairs, but not for OFF midget (OFFm, P=0.93) or ON versus OFF midget
(OvOm, P=0.99; here, correlations even decreased slightly but significantly)
cell pairs (cell pair numbers shownin Fig. 1e,f). Error bars are median + robust
confidenceinterval (95%), and data are fromthree retinas.

fields, failed toreproduce the spatial-contrast-dependent correlation
differences observed across cell types (Fig. 2e, bottom).

Comparison of marmoset and mouse retina

To assess whether spatial-contrast-dependent correlations gener-
alize across species, we also recorded from ganglion cells in the iso-
lated mouse retina (Extended Data Figs. 3-5), to which we presented
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natural videos generated by pairing horizontal gaze traces recorded
from freely moving mice* with natural images from a standard data-
base. We functionally identified (Extended Data Fig. 3) the four types of
alphaganglion cells, which are among the most accessible and widely
studied mouse ganglion cell types® . These cells can be identified
by their characteristic visual response properties (Extended Data
Fig.4). Moreover, transient and sustained alpha cell types seem to be
orthologs of the primate parasol and midget cell types, respectively,
asindicated by transcriptome analysis®. Our analysis of correlations
and redundancy showed striking similarities between marmoset and
mouse ganglion cells (Extended Data Fig. 5). In particular, we found
substantial pairwise correlations under the natural video for certain
types, but not others. Sustained-OFFa cells were strongly decorrelated,
whereasthe other three cell types displayed sizeable pairwise correla-
tions. Positive correlations also occurred across ON and OFF types for
transient alpha cells.

The pairwise correlations were tightly linked to redundancy in
the retinal output, and the high response reliability (Extended Data
Fig. 5b) with Fano factors mostly below unity (Extended Data Fig. 3g)
againindicated alow-noise regime. As in the marmoset retina, the
cells with the highest correlation and redundancy (Extended Data
Fig. 5d,f), here transient-OFFa cells, displayed much more reliable
responses than the most decorrelating ones (Extended Data Fig. 3h),
here sustained-OFFa cells. Moreover, stronger correlations were gener-
ally associated with higher spatial contrast, in particular at shortretinal
distances, and this spatial-contrast-dependence of pairwise correla-
tions was not well captured by LN models (Extended Data Fig. 5h-j).
Thus, the cell-type-dependent deficiency in redundancy reduction
during natural videos and the correlation-boosting characteristics of
high-spatial-contrast fixations seem to be general phenomenaacross
species.

Subunit models for natural scenes

To investigate how spatial contrast influences response correlations,
we aimed at capturing the spatial-contrast sensitivity of the cellsunder
natural stimuli in a computational model. We used a subunit model,
which partitions the receptive field of aganglion cell into smaller sub-
unitswhose outputs are nonlinearly summed. The subunits are thought
to correspond to bipolar cells that provide excitatory input to ganglion
cells*” %, To overcome challenges of previous approaches for fitting
subunit models to experimental data'****°, such as the reliance on
white-noise stimulation, we developed a new parameterized subunit
model, which we call the subunit grid model (Fig. 3b). The model con-
tains a set of identical subunits with centre-surround receptive fields
and semiregular spacing for each ganglion cell. It can be efficiently
fitted toresponses obtained under flashed sinusoidal gratings of vary-
ing orientation and spatial frequency (Extended Data Fig. 6), which are
potent stimuli for driving ganglion cells.

The obtained subunit models showed component differences
between ganglion cell types (Fig. 3c,d). For example, subunit nonlin-
earities of ON parasol cells had particularly high thresholds, show-
ing stronger rectification than for OFF parasol cells, the opposite
of what was expected from findings in the macaque retina®. Midget
cells generally also showed substantial rectification, consistent with
findings in the peripheral macaque retina®>?, but OFF midget cells
additionally displayed a more linear regime around the origin of
the subunit nonlinearity. Obtained subunit diameters for OFF para-
sol cells (around 30-40 pum; Extended Data Fig. 6i) and OFF midget
cells (around 20 pm) roughly matched data on dendritic field sizes
of the putative presynaptic bipolar cells in the peripheral marmoset
retina® (around 30 pm for type 3 diffuse bipolar cells and 15-20 pm
for flat midget bipolar cells, respectively). For ON midget cells, on the
other hand, subunits were often surprisingly large (around 50 pm),
indicating that they do not represent individual bipolar cell inputs,
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potentially because subunit size was not well constrained by the data
for these cells. Alternatively, this could reflect several midget bipolar
cells combining to form individual subunits®*** or signals from type-6
diffuse bipolar cells, which also provide input to ON midget cells*
and which have dendritic diameters of 40-80 pm in the marmoset
retina®. Cell-type-specific differences in nonlinear components were
also prominent in the mouse retina (Extended Data Fig. 7). Besides
rectification in most cell types, we observed prominent saturation of
subunit signalsin transient-OFFa cells. This subunit nonlinearity, found
particularly for dorsal transient-OFFa cells (Extended Data Fig. 8), is
consistent withincreased sensitivity to spatial homogeneity*. For most
celltypes, subunit models captured responsesto flashed naturalimages
better than linear receptive fields for both marmoset (Fig. 3e,f) and
mouse retina (Extended Data Fig. 7). Thus, cell-type-specific models
ofthe nonlinear receptive field can reflect retinal processing of spatial
contrastinnaturalistic stimuli, indicating that the different nonlinear
characteristics may help explain differences in spatial-contrast-driven
correlations between ganglion cell types.

To extend the analysis to dynamic stimuli, we added temporal fil-
ters to both the centre and surround of the subunits and fitted spa-
tiotemporal subunit grid models to ganglion cell responses under
sinusoidal gratings flickering in rapid succession (Fig.4a). The obtained
spatiotemporal models captured natural video responses for different
types of ganglion cells, in both marmoset and mouse (Fig. 4b,c). Subu-
nit grid models improved over simple LN models for most cell types,
except for mouse sustained- and transient-OFFa cells, by reproducing
additional response peaks. Response predictions of the subunit grid
model also outperformed those of alternative subunit identification
schemes, such as spike-triggered non-negative matrix factorization®
and spike-triggered clustering® (Extended Data Figs. 9 and 10).

Moreover, the obtained models reproduced the measured response
correlations well. In particular, cell-type-specific correlations predicted
by subunit grid models were much closer to the data than for LN models
(Fig.4e), which tended to overestimate these correlations as previously
reported™. The lower predicted response correlations by the subunit
grid model might seem counterintuitive: subunits confer sensitivity to
spatial contrast, which, as we have seen, boosts correlationsin the data
(Fig.2). However, this discrepancy can be explained by the inclusion of
surround suppression in the subunit grid model through the subunit
surround. LN models, particularly when fitted to white-noise stimuli,
may underestimate the strength of the receptive-field surround®.

Nonlinearities drive correlations

To distinguish the effects of surround suppression and spatial-contrast
sensitivity conveyed by the subunits, we compared the subunit grid
models to difference-of-Gaussians (DoG) LN models fitted directly
to the flickering grating responses, the same stimulus used for the
subunitgrid. DoG LN models showed better response predictions than
white-noise-fitted LN models but were still outperformed by subunit
grid models for certain cell types (Fig. 4d). Pairwise correlations esti-
mated by DoG LN models matched those of the subunit grid models
(Fig.4e), confirming that surround suppressionis essential for reduc-
ing the overestimation of correlations by the standard LN model and
capturingthe correctrange of response correlations. However, the DoG
LN model lacks the required spatial nonlinearities, and we therefore
used the subunit grid model to investigate the observed dependence
of response correlations on spatial stimulus structure.

To investigate how the nonlinear receptive field contributes to the
response correlations, we separated the fixations for each cell pair
according to how important nonlinear spatial processing was for deter-
mining the cells’responses (Fig. 5a). Specifically, we tagged those fixa-
tions as nonlinear for which the predictions of the (spatially nonlinear)
subunitgrid model differed most from the predictions of the (spatially
linear) DoG LN model. For these ‘maximally differentiating fixations’,
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(1923), sustained-OFFa n =76 (889) from three marmoset and four mouse
retina pieces (eight pieces for LN model evaluation with nvalues givenin
Extended DataFig. 5).
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Fig.5|Correlated activity results from fixations that evoke nonlinear theratio of subunit grid over DoG LN model performance during maximally
responses. a, Top, sample image trajectory for the presentation of asingle differentiating fixations, and overall pairwise response decorrelation, calculated
image. Middle, corresponding model predictions for two neighbouring OFF asthedifference between stimulus and response correlations relative to the
parasol cells (receptive fields ininset) for the DoG LN and the subunit grid stimulus correlations. For cells with zero DoG LN performance, the ratiowas
models. Shaded areas mark two consecutive fixations, the first classified as set to the maximum value measured across cells of the same type. * denotes
differentiating (the two model predictions diverge) and the second as non- significant Spearman correlation (p = 0.037, two-sided permutation test). For
differentiating (model predictions align). Bottom, responses of the two cells bandd, error barsare median + 95% robust confidence interval and number of
during the same period. b, Comparison of average model performances (R?) cell pairsare ON parasol n =269, OFF parasol n=176, ON midget n = 355, OFF
for the subunitgrid modeland the DoG LN model duringthe top 20% maximally =~ midget n=494, transient-ONa n = 63, transient-OFFa n = 315, sustained-ONa
differentiating fixations. ¢, Contributions of linear and nonlinear fixations to n=2040, sustained-OFFa n =889 from three marmoset and four mouse retina
the total pairwise correlations for the natural video (mean with 95% confidence  pieces (eight pieces for response decorrelation with n values givenin Extended
intervals). d, Relationship between receptive-field nonlinearity, calculated as DataFig.5).

the subunitgrid model displayed superior model predictionscompared  partial correlations between linear and nonlinear fixations, indicating
tothe DoG LN models for certain cell types, suchas ONand OFF parasol  thatresponses duringboth sets of fixations contributed equally to the
cellsin the marmoset and sustained-ONa cells in the mouse (Fig. 5b),  total correlation for these cells. We therefore conclude that fixations
for which capturing receptive-field nonlinearities thus matteredmost.  containingsalient spatial structure, which drives particularly the non-
These celltypes had also shown strong spatial-contrast dependenceof  linear components of receptive fields, elicit concerted responses for
the pairwise response correlation (Fig. 2b and Extended Data Fig.5i).  specific types of retinal ganglion cells. Thus, across both marmoset
Thus, to determine whether the nonlinear receptive field alone  and mouse, ganglion cells with stronger receptive-field nonlinearities
might explain the difference in contributions of high-and low-contrast  tend to perform less stimulus decorrelation during stimulation with
stimulus segments to the response correlations, we split the set of all  natural gaze dynamics (Fig. 5d).
fixations into those in which predictions of a linear and a nonlinear
receptive field matched best (‘linear fixations’) and those in which . .
the two predictions most diverged (‘nonlinear fixations’). We then ~ Discussion
assessed the relative importance of the linear and nonlinear fixations ~ We provide direct evidence that redundancy reduction in the retina
for the correlated spiking activity by calculating the contribution of  is violated in a cell-type-specific manner under natural stimuli that
each subset of fixations to the total correlation. Indeed, for parasol include gaze dynamics. Although some ganglion cell types displayed
cellsinthe marmoset and nonlinear alphacellsinthe mouse, nonlinear  substantial decorrelation and redundancy reduction, others showed
fixations contributed the most to the overall pairwise correlations,  highly correlated activity. The correlations led to redundant represen-
as indicated by the larger partial correlations for this set of fixations  tations and were particularly pronounced when the stimulus shifted
(Fig. 5¢), whereas partial correlations for linear fixations were much  to anew fixation that contained high spatial contrast. This concerted
more similar between cell types. Moreover, it is the nonlinear fixa-  activity originated in nonlinear processing in the receptive fields of
tions that were responsible for the positive correlationsof ONand OFF  retinal ganglion cells, a processing feature that has been absentin
parasol cells (Fig. 5c). By contrast, linear cells, such as marmoset OFF  many considerations of efficient coding and redundancy reduction
midget cellsand mouse sustained-OFFa cells, displayed more balanced  intheretina*’*, Under the global changes in spatial stimulus patterns
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induced by gaze shifts, nonlinear receptive fields become simultane-
ously activated inaway thatis not effectively suppressed by surround
mechanisms. This co-activation occurs for arange of distances, as well
as across preferred contrast polarity, thus even creating seemingly
paradoxical positive correlations between ON and OFF cells.

The correlated activity of parasol ganglion cells in the primate retina
and transient alpha cells in mouse challenges the efficient coding
hypothesis. Although complete decorrelation is predicted by effi-
cientcoding only when thereis no noise before the output stage of the
system®, it seems unlikely that the observed high correlations directly
counteract noise for efficient signal transmission. First, stimulation
with temporal dynamics from natural gaze shifts drives responses
with high reliability and signal-to-noise ratio. Second, the most cor-
related cell types show particularly reliable responses compared to
the least correlated ones. Thus, a cell-type-specific role of correla-
tions for counteracting noise is not supported. It remains possible,
however, that correlations could support coding efficiency for large
populations of several ganglion cell types. For example, correlations
between ON parasol cells might counteract noise in midget cells for a
joint efficient stimulus encoding, in particular because noise may be
shared between parasol and midget cells®®**, However, it seems unclear
whether their distinct downstream pathways and their differencesin
conduction velocity*® may support a joint coding scheme of parasol
and midget cells.

The analysis of decorrelation and redundancy does not hinge on
the specific stimulus aspects represented by the cells’ activity or
whether cells can be described by a linear receptive field. If the task
were, for example, to encode high-frequency spatial contrast without
redundancy, lateral inhibition that is as sensitive to spatial contrast
as centre excitation could decorrelate responses even with nonlinear
receptive fields. However, ganglion cell receptive-field surrounds may
differ substantially from the centre in their spatial nonlinearities®*.
To further investigate the relationship between spatial nonlinearities
and redundancy reduction, it would thus be interesting to analyse
how spatially nonlinear ganglion cell models should be structured to
optimize coding efficiency*.

Earlier investigations of correlated retinal activity had often focused
onspontaneous activity or artificial stimuli******¢, such as white noise.
Notably, in the context of artificial stimuli, nonlinearities of recep-
tive fields had previously been associated with strengthening decor-
relation, in contrast to our finding with natural stimuli. Studies of
salamander retina with natural stimuli had also observed considerable
correlations'*, although not connected to spatial nonlinearities or
gaze dynamics. Also on the basis of salamander retina, fixational eye
movements had been proposed to contribute to decorrelation*®, yet
our datashow strong correlations for stimuli that contained measured
fixational eye movements.

Correlatedretinal activity hasbeenindicated to playaroleinincreas-
ing spatial resolution** and error correction®. Because retinal circuit
nonlinearities have been associated with computations underlying
visual feature detection*>*°, we hypothesize that the response correla-
tionsinnonlinear cell types aid in signalling the detection of arelevant
visual feature in natural scenes. For example, we found that mammalian
direction-selective (DS) retinal ganglion cells, which are a prime exam-
ple of feature detectors, have strongly nonlinear receptive fields, and
their strong pronounced pairwise response correlations could even
exceed stimulus correlations (Extended Data Fig. 11). Correlations
may be particularlyimportant for tagging the relevant feature, such as
local spatial contrast or the preferred motion signal, and distinguish-
ing it from changes in illumination of the receptive field. Although a
single neuron’s firing rate might be confounded by light intensity or
other stimulus dimensions to which the neuronis sensitive, the feature
of interest may be isolated by combining the activity from groups of
neurons®. Further insight into the functional consequences of corre-
lated activity may come from assessing their dependence on stimulus

context, such as average light level. Spatial nonlinearities in ganglion
cell receptive fields, for example, may decrease at lower light levels®,
which should result in decreased stimulus-induced correlations, and
noise correlations may become more prevalent’.

Our observations of stronger nonlinearities in marmoset ON than
OFF parasol cells differ from previous findings that OFF parasol cells are
the more nonlinear ones in the macaque®-*. In our data, the stronger
nonlinearities of ON parasol cells were observed in the subunit mod-
els fitted to flashed gratings, as well as in those fitted to flickering
gratings; in the stronger improvements of response predictions for
natural stimuli when nonlinearities were included; and in responses
to reversing gratings (for example, Extended Data Fig. 9b). It seems
feasible that thisrepresents aspecies difference between macaque and
marmoset but could also depend on experimental conditions, such as
illumination level or stimulation of the receptive-field surround?>"2>,
Generally, differencesin nonlinearities between ON and OFF channels
in the retina seem to be species and cell-type dependent®*>*¢ and may
reflect differences in visual tasks®.

Efficient coding is often considered anatural assumption for sensory
systems because of the need to preserve energy associated with neu-
ronal activity*s. However, whether the retinal outputis energy-efficient
in vivo has been debated*. Moreover, feature detection might have
different requirements than general information transmission, such
as robustness or future prediction®, which could lead to deviations
from efficient coding. In this context, the retinal code may multiplex
correlated nonlinear responses containing feature information with
decorrelated baseline activity. Our findings indicate that the retinal
output can maintain efficiency in various stimulus contexts while
being robust for feature detection. Energy constraints could also be
addressed by other mechanisms, such as making responses transient,
allowing the visual system to detect important features promptly.
Thus, the different information channels of the retina may balance
energy conservation and robust feature detection on the basis of their
respective visual tasks.
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Methods

Tissue preparation and electrophysiology

We recorded spiking activity from retinas of three adult male mar-
moset monkeys (Callithrixjacchus), 12,13 and 18 years of age, using
asingle piece of retina from each animal. No previous determination
of sample size was used. The retinal tissue was obtained immediately
after euthanasia from animals used by other researchers, in accord-
ance with national and institutional guidelines and as approved by
theinstitutional animal care committee of the German Primate Center
and by the responsible regional government office (Niedersachsisches
Landesamt fiir Verbraucherschutz und Lebensmittelsicherheit, permit
number 33.19-42502-04-20/3458). After enucleation, the eyes were
dissected under roomlight, and the cornea, lens and vitreous humour
were carefully removed. The resulting eyecups were then transferred
intoalight-tight container containing oxygenated (95% O, and 5% CO,)
Ames’ medium (Sigma-Aldrich) supplemented with 4 mM D-glucose
(Carl Roth) and buffered with 20-22 mM NaHCO, (Merck Millipore)
to maintain a pH of 7.4. The container was gradually heated to 33 °C,
and after at least an hour of dark adaptation, the eyecups were dis-
sected into smaller pieces. All retina pieces used in this study came from
the peripheral retina (7-10 mm distance to the fovea). The retina was
separated from the pigment epithelium just before the start of each
recording. Allreported marmoset data are from pieces for which a5%
contrast full-field modulation at 4 Hz produced at least a10 spikes per
second modulationin the average ON parasol spike rate. This ensured
high quality and light sensitivity of the analysed retina pieces (Extended
DataFig.12).

We also recorded spiking activity from 12 retina pieces of eight
wild-type female mice (C57BL/6)) between 7 and 15 weeks old (except
for one 23-week-old mouse). No previous determination of sample
size was used. All mice were housed on a12-hour light/dark cycle. The
ambient conditions in the animal housing room were kept at around
21°C(20-24 °C) temperature and near 50% (45-65%) humidity. Experi-
mental procedures were in accordance with national and institutional
guidelines and approved by the institutional animal care committee of
the University Medical Center Gottingen, Germany. We cut the globes
along the ora serrata and then removed the cornea, lens and vitreous
humour. The resulting eyecups were hemisected to allow two separate
recordings. On the basis of anatomical landmarks, we performed the cut
along the horizontal midline and marked dorsal and ventral eyecups.
Before the start of each recording, we isolated retina pieces from the
scleraand pigment epithelium.

For both marmoset and mouse retina recordings, we placed retina
pieces ganglion-cell-side-down on planar multielectrode arrays (Mul-
tichannel Systems; 252 electrodes; 10 or 30 pum electrode diameter,
either 60 or 100 pm minimal electrode distance) with the help of a
semipermeable dialysis membrane (Spectra Por) stretched across a
circular plastic holder (removed before the recording). The arrays
were coated with poly-D-lysine (Merck Millipore). For some marmoset
recordings, we used 60-electrode perforated arrays®. Dissection and
mounting were performed under infrared light (using LEDs with peak
intensity at 850 nm) on a stereo-microscope equipped with night-vision
goggles. Throughout the recordings, retina pieces were continuously
superfused with oxygenated Ames’ solution flowing at 8-9 ml min~for
the marmoset or 5-6 ml min™ for the mouse retina. The solution was
heated toaconstanttemperature of 33-35 °C through aninline heater
inthe perfusionline and a heating element below the array.

Extracellular voltage signals were amplified, bandpass filtered
between 300 Hz and 5 kHz and digitized at 25 kHz sampling rate. We
used Kilosort® for spike sorting. To ease manual curation, we imple-
mented achannel-selection step fromKilosort2 by discarding channels
that contained only a few threshold crossings. We curated the output
of Kilosort through phy, agraphical userinterface for visualization and
selected only well-separated units with clear refractory periodsinthe

autocorrelograms. In a few cases, we had to merge units with tempo-
rally misaligned templates; we aligned the spike times by finding the
optimal shift throughthe cross-correlation of the misaligned templates.

Visual stimulation

Visual stimuli were sequentially presented to the retina through a
gamma-corrected monochromatic white organic LED monitor (eMagin)
with 800 x 600 square pixels and 85 Hz (marmoset) or 75 Hz (mouse)
refresh rate. The monitor image was projected through a telecentric
lens (Edmund Optics) onto the photoreceptor layer, and each pixel’s
side measured 7.5 pm on the retina or 2.5 pm for some marmoset
recordings in which we used a different light-projection setup®. All
stimuli were presented on a background of low photopic light levels,
and their mean intensity was always equal to the background. To esti-
mateisomerization rates of photoreceptors, we measured the output
spectrum of the projection monitors and the irradiance at the site of
theretinaand combined thisinformation with the absorbance profile®
and peak sensitivities of the opsins (543-563 nm for different marmoset
M-cones and 499 nm for marmoset rods®**%; 498 nm for mouse rods)
and with the collecting areas of photoreceptors, using 0.5 pm? for
mouserods®, 0.37 um?for marmoset cones and 1.0 pm?for marmoset
rods, applying here the values from macaque cones and rods®”*%, For the
marmoset, the background light intensity resulted in approximately
3,000 photoisomerizations per M-cone per second and approximately
6,000 photoisomerizations per rod per second, and for the mouse,
approximately 4,000 photoisomerizations per rod per second. We
fine-tuned the focus of stimuli on the photoreceptor layer before the
start of each experiment by visual monitoring through a light micro-
scope and by inspection of spiking responses to contrast-reversing
gratings with a bar width of 30 pum.

Receptive-field characterization

To characterize functional response properties of the recorded gan-
glion cells, we used a spatiotemporal binary white-noise stimulus (100%
contrast) consisting of a checkerboard layout with flickering squares,
ranging from 15 to 37.5 um on the side in different recordings. The
stimulus update rate ranged from 21.25 to 85 Hz. Each stimulus cycle
consisted of a varying training stimulus and a repeated test stimulus,
with 18-55 cycles presented in total. The training stimulus duration
ranged from 45 to 144 s in different experiments. The test stimulus
consisted of a fixed white-noise sequence ranging from16sto18s,
whichweused here to determine noise entropies and noise correlations.

We calculated spike-triggered averages (STAs) over a 500 ms time
window and extracted spatial and temporalfilters for each cell as pre-
viously described®. In brief, the temporal filter was calculated from
the average of spatial STA elements whose absolute peak intensity
exceeded 4.5 robust standard deviations of all elements. The robust
standard deviation of a sample is defined as 1.4826 times the median
absolute deviation of all elements, which aligns with the standard devia-
tion foranormal distribution. The spatial receptive field was obtained
by projecting the spatiotemporal STA on the temporal filter. We also
calculated spike-train autocorrelation functions under white noise,
using adiscretization of 0.5 ms. For plotting and subsequent analyses,
allautocorrelations were normalized to unit sum.

Foreachcell, acontour was used to summarize the spatial receptive
field. We upsampled the spatial receptive field to single-pixel resolution
andthenblurreditwithacircular Gaussian of o =4 pixels. We extracted
receptive-field contours using MATLAB's ‘contourc’ function at 25%
of the maximum value in the blurred filter. In some cases, noisy STAs
would cause the contour to contain points that lay further away from
the actual spatial receptive field. Thus, we triaged the contour points
and removed points that exceeded 20 robust standard deviations of all
distances between neighbours of the points that were used to define
the contour. This process typically resulted in asingle continuous area
without holes. The centre of each receptive field was defined as the
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median of all contour points, and its area was determined by the area
enclosed by the contour.

Ganglion cell type identification

We used responses to a barcode stimulus’ to cluster cells into func-
tional typesin each single recording. The barcode pattern had alength
of12,750 (or 12,495) pm and was generated by superimposing sinusoids
of different spatial frequencies ( f) with a1/fweighting. The constituent
sinusoids had spatial frequencies between 1/12,750 (or 1/12,495) and
1/120 pum™ (separated by 1/12,750 or 1/12,495 um " steps, respectively)
and had pseudorandom phases. The final barcode pattern was nor-
malized so that the brightest (and dimmest) values corresponded to
100% (and —-100%) Weber contrast from the background. The pattern
moved horizontally across the screen at a constant speed of 1,275 (or
1,125) pm s, and the stimulus was repeated 10-20 times. Obtained
spike trains were converted into firing rates using 20 ms time bins and
Gaussiansmoothing with o =20 ms. We quantified cell reliability with
asymmetrized coefficient of determination (R?), as described previ-
ously**. We only included cells with a symmetrized R? value of at least
0.1and that were not putative DS cells (see below).

We used average responses to the barcode stimulus to generate a
pairwise similarity matrix, as described previously”. We defined the
similarity between each pair of cells as the peak of the cross-correlation
function (normalized by the standard deviations of the two signals)
between the spike rate profiles of the two cells. To obtain afinal similar-
ity matrix, we multiplied the entries of the barcode similarity matrix
with the entries of three more similarity matrices, obtained from
receptive-field response properties. The first two were generated by
computing pairwise correlations between both the temporal filters
and the autocorrelation functions of each cell. The third one used
receptive-field areas and was defined as the ratio of the minimum of
the two areas over their maximum (Jaccard index).

We converted the combined similarity matrix to a distance matrix
by subtracting eachentry from unity. We then computed a hierarchical
cluster tree with MATLAB’s ‘linkage’ function, using the largest dis-
tance between cells from two clusters asameasure for cluster distance
(complete linkage). The tree was used to generate 20-50 clusters; we
chose the number depending on the number of recorded cells. This
procedure yielded clusters with uniform temporal components and
autocorrelations and with minimally overlapping receptive fields but
typically resulted in oversplitting functional ganglion cell types. Thus,
we manually merged clusters with at least two cells on the basis of the
similarity of properties used for clustering and on receptive-field til-
ing. Toincorporate cells that were left out of the clustering because of
the barcode quality criterion, we expanded the clusters obtained after
merging. Anunclustered cell was assigned to a cluster if its Mahalanobis
distance from the centre of the cluster was at most 5 but atleast 10 for
all other clusters. Our method could consistently identify types with
tiling receptive fields forming a mosaic over the recorded area. This
was generally the case for parasol and midget cells in the marmoset
and the different alpha cells in the mouse retina, which are the ones
primarily analysed in this work. Note, though, that mosaics are typically
incomplete because of missed cells whose spikes were not picked up
by the multielectrode array (or not sufficiently strong to allow reliable
spike sorting). As is common with this recording technique, missed
cells are more frequent for some cell types than for others, and this
recordingbias renders, for example, midget cell mosaics less complete
thanthose of parasol cells. The present analyses, however, do not rely
ontherecovery of complete mosaics, as the pairwise investigations of
correlation and redundancy only require sufficient sampling of pairs
atdifferent distances.

Matching cell types to mouse ganglion cell databases
We validated the consistency of cell type classification by examining cell
responses toa chirp stimulus®, which was not used for cell clustering.

Light-intensity values of the chirp stimulus ranged from complete dark-
ness to the maximumbrightness of our stimulation screen. The stimulus
was presented 10-20 times. For the mouse retina, the parameters of
the chirp stimulus matched the original description, which allowed us
to compare cellresponses to calcium tracesina database of classified
retinal ganglion cells**. To convert spike rates to calcium signals, we
convolved our spiking data with the calcium kernel reported in the
original paper. We then computed correlations to the average traces
of each cluster in the database.

For some mouse experiments, we also used responses to spot
stimuli®. In brief, we flashed one-second-long spots over the retina
at different locations and with five different spot diameters (100,
240,480,960 and 1,200 pm). Between spot presentations, illumina-
tion was set to complete darkness, and the spots had an intensity of
100-200 photoisomerizations per rod per second. For each cell, we
estimated aresponse centre by identifying which presented spot loca-
tionyielded the strongest responses when combining all five spot sizes.
We only used cells whose estimated response centre for the spots lay
no further than 75 um from the receptive-field centre as determined
with white-noise stimulation. To calculate similarities to the cell types
in the available database?®, we concatenated firing-rate responses to
the five spot sizes and then calculated correlations with the available
database templates. We also applied saccade-like shifted gratings to
detectimage-recurrence-sensitive cellsin mouseretinas as previously
described®*”™. These cells correspond to the transient-OFFa cells in
the mouse retina.

Natural videos, LN model predictions and response correlations
For the marmoset retina, we constructed natural videos in similar
fashion as previously done for the macaque retina®*”2 In brief, the
videos consisted of 347 grayscale images that were shown for1s each
and jittered according to measurements of eye movements obtained
from awake, head-fixed marmoset monkeys' (graciously provided
byJ. L. Yates and . F. Mitchell; personal communication). These eye
movement data had been collected at a scale of about 1.6 arcmin per
pixel, which roughly corresponds to 2.67 pm on the marmoset retina,
using a retinal magnification factor of 100 pum deg™ (ref. 73). To align
the sampled traces with the resolution of our projection system, we
adjusted the pixel size of the gaze traces to 2.5 pm when presenting the
natural video. We furthermore resampled the original 1,000 Hz gaze
traces to produce a video with arefresh rate of 85 Hz. The presented
natural video consisted of 30-35 cycles of varying training and repeated
test stimuli. Test stimuli consisted of 22 distinct naturalimages, using
the original grayscale images (graciously provided by J. L. Yates and
J. F. Mitchell; personal communication) viewed by the marmosets
during eye movement tracing (mean intensity —10% relative to back-
ground; 38% average contrast, calculated as the standard deviation
across all pixels for each image). Each test image was paired with a
unique movement trajectory given by the marmoset eye movements.
For each training stimulus cycle, we presented 40 images out of the
325 remainingimages (sampled with replacement), each paired witha
unique movementtrajectory. These 325images were obtained from the
van Hateren database™, were multiplicatively scaled to have the same
meanintensity as the background and had an average contrast of 45%.

For the mouse retina, we applied a similar procedure. In brief, the
videos consisted of the same 325 images from the van Hateren data-
base as used for the marmoset training stimulus, shown for 1s each
and jittered according to the horizontal gaze component? of freely
moving mice (graciously provided by A. Meyer; personal communica-
tion). We resampled the original 60 Hz gaze traces to produce avideo
with a refresh rate of 75 Hz. For our recordings, the one-dimensional
gazetrajectory was randomly assigned to one of four orientations (O,
45,90 or 135 degrees) for each 1simage presentation. The amplitude
of the original movement was transformed into micrometre on the
retina using a retinal magnification factor of 31 pm deg ™ for the mouse.



Allimages were multiplicatively scaled to have the same meanintensity
asthebackground. Test stimuli consisted 0f 30-35 cycles of 25 distinct
naturalimages, paired with unique movement trajectories. The train-
ing stimuli consisted of batches of 35 images out of the remaining 300
(sampled with replacement), each paired with a unique movement
trajectory.

For the model-based analyses of the responses to the natural videos,
we applied atemporal binning corresponding to the stimulus update
frequency (85 Hz for the marmoset and 75 Hz for the mouse) and used
the spike countineachbin. To extract firing rates for the test stimuli, we
averaged the binned responses over repeats. Furthermore, to eliminate
cellswith noisy responses, we only used cells for subsequent analyses
with a symmetrized R? of at least 0.2 between even and odd trials of
the test set.

All model predictions for natural videos used the stimulus train-
ing part for estimating an output nonlinearity and the test part for
evaluation of model performance. For the LN model, we obtained the
spatiotemporal stimulus filter (decomposed into a spatial and atem-
poralfilter as explained in ‘Receptive-field characterization’) from the
spatiotemporal white-noise experiments but estimated the nonlinear-
ity fromthe natural-video data. To do so, we projected the video frames
onto the upsampled spatialfilter (to single-pixel resolution) and then
convolved theresult with the temporal filter. The output nonlinearity
was obtained as a histogram (40 bins containing the same number
of data points across the range of filtered video-stimulus signals)
containing the average filtered signal and the average corresponding
spike count. To apply the nonlinearity to the test data, we used linear
interpolation of histogram values. We estimated model performance
using the coefficient of determination between model predictionand
measured firing rate to obtain the fraction of explained variance (R?).
Negative values were clipped to zero.

We calculated video response correlations, using the trial-averaged
firing rates of the test stimulus, as the Pearson correlation coefficient
between the firing rates for each cell pair of the same type (as well as
across specific types). We performed the same analyses for model pre-
dictions and for calculating correlations inherent to the test stimulus,
where we calculated pairwise correlations of the light intensity of 5,000
randomly selected pixels. Decorrelation was defined for each cell pair
as the difference between stimulus and response correlation relative
tostimulus correlation for a pixel distance matching that of the actual
cell pair distance. To generate correlation-distance curves (Fig. 1e), we
sorted cell pairs by ascending distance and averaged pair correlations
over groups of 20-60 pairs (depending on cell type, using fewer pairs
per bin when the number of available cells was small).

Spike-traininformation and fractional redundancy

To estimate whether pairwise correlations led to coding redundancy,
we quantified theinformation contained in ganglion cell spike trains by
measuring entropies of response patterns in temporal-frequency space
by evaluating the Fourier transforms of the response patterns””. For
temporal patterns that are sufficiently long compared to the time scales
of correlations, this approach allows treating the different frequency
modes independently and approximating, through the central limit
theorem, the empirical distribution of Fourier components by normal
distributions whose entropies can be analytically computed”™”. This
greatly reduces the sampling problem of information-theoretic evalua-
tions encountered by direct methods of computing entropies through
empirical frequencies of different response patterns”’.

Here we applied the method to spike-train responses (binned at
0.4 ms) from the repeated parts of the natural video (or white noise)
and divided theminto 0.8-s-long non-overlapping sections separately
for each stimulus trial. This process yielded 27 (or 31) sections for the
marmoset (or mouse) natural video and 20-22 sections for white noise
for each trial (around 55 white-noise trials for marmoset and 40 for
mouse recordings). The selection of the section length aimed at having

comparable numbers of sections per trial and trials per section (both
around 30) inthe natural video analysis to mitigate bias effects from lim-
ited datain the calculation of information rates. For each section (s) and
trial (t), we performed a Fourier transform to obtain complex-valued
frequency coefficients that were then separated into real-valued cosine
(c.os) and sine (cy;,) coefficients for each frequency (f). For asingle-cell
analysis, we then estimated signal (Hg,,) and noise (H,,;s.) entropies
by computing the variance of those coefficients either over sections
of agiven trial or over trials for agiven section, respectively, and then
averaging the variances over the remaining dimension (that is, trials
or sections, respectively):

1
Hsignal = §|0g2[2T[€( l/csos + l/ssin):I

1
Hnoise(f) = EIng[Zne( Vctos + l/stin)]

where, for example, V3, = (Var(cg,(f))s), denotes the variance of sine

coefficients (subscript ‘sin’) over sections (superscript ‘s’), averaged
over trials.

The frequency-resolved information rate was calculated as the dif-
ference of signal and noise entropies, normalized by the duration of
the applied response sections to obtaininformation per time. The total
information rate was then obtained as the sum over frequencies. For
thissum, we applied an upper cutoffat 200 Hz, because signal and noise
entropies had converged to the same baseline level by then.

For estimating the information content of a cell pair, we proceeded
analogously, but instead of computing the variances of the sine and
cosine coefficients directly, we first gathered the sine and cosine coef-
ficients frombothcells to compile the corresponding 4 x 4 covariance
matrix over sections (or trials) and averaged the covariance matrices
over trials (or sections). We then used the four eigenvalues (A ,) of each
averaged covariance matrix to calculate the response entropy for a cell
pair (separately for signal and noise):

4
Hpair(f) = %|0g2|:2T[€[I§1 /lk(f)]}

Information rates were again obtained as the difference between
signal and noise entropy, summed over frequencies and normalized by
the duration of the response sections. To check for bias from finite data
in the calculation of information rates’®, we also computed informa-
tion rates for different fractions of the full dataset but observed little
systematic dependence onthe size of the data fraction. Thisis for two
reasons. First, the possibility to obtain entropies analytically only after
estimating the variances of the Fourier components greatly limits the
sampling problem, and second, the comparable numbers of trials and
sections used in the estimation of entropies mean that any residual
bias is of similar scale for signal and noise entropies, thus leading to
at least partial cancellation.

To obtain the contributions of individual frequency bands to the
information rates, we used the same approach as above separately
for each frequency component without summation over frequencies.

Fractional redundancy for a cell pair (i, j) was calculated on the
basis of a previous definition>"? as the difference between the sum
of single-cell information values (/;and /) and pair information (/)
normalized by the minimum single-cell information:

L+ 1;-1
97 min(, 1))

Other definitions of redundancy, in particular in the context of effi-
cient coding, are based on a comparison of the actual information
passed through an information channel (here corresponding to the
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jointresponses of the cell pair and their information rate /;)) and the
channel capacity: that is, the maximum information that the chan-
nel could supply*”. In practice, however, channel capacity is difficult
to assess and requires fundamental assumptions about the neural
code and attainable firing rates. Instead, the comparison of /; to the
sum of single-cell information rates, as used here, can be thought of
as capturing whether the capacity as specified by the constraints of
theindividual cells’ response characteristics is fully exhausted by the
jointresponses. Thus, fractional redundancy is sensitive to inefficient
use of the channel capacity that stems from correlation but not from
inefficient coding by individual cells.

Analysis of fixations and spatial contrast

Toinvestigate the effects of spatial contrast on response correlations,
we divided the test part (repeated image sequences) of the natural
video into distinct fixations by detecting saccadic transitions. To do
so, we first marked each time point when a new image was presented
asatransition. Ineachimage presentation, we calculated the distance
between consecutive positions to estimate the instantaneous eye veloc-
ity and used MATLAB’s ‘findpeaks’ function to obtain high-velocity
transitions. We constrained peak finding for the marmoset (and mouse)
to a minimum peak time interval of 47 (and 53) ms and a minimum
amplitude of 10 (and 300) deg s ™. This process yielded 80 fixations for
the marmoset and 68 fixations for the mouse video. Fano factors were
computed for individual fixations. To reduce effects of nonstationary
activity, weincluded here only cells with a positive symmetrized coef-
ficient of determination between the firing-rate profiles of the first half
and second half of trials. To mitigate noise from fixations with no or
little activity, we excluded, for each cell, fixations with fewer than three
spikes on average and report the average Fano factor over fixations,
weighted by the mean spike count.

For each video frame and each ganglion cell, spatial contrast was
calculated as described previously*® using the standard deviation of
pixelsinside the cell’s receptive field, weighted by the receptive-field
profile. For each fixation, we assigned to each cell the median spatial
contrast of all frames during the fixation period. We also assigned a
linear activation per fixation, estimated by filtering video frames with
the spatial filter obtained from white noise and taking the median over
all fixation frames.

To reduce effects of the light level on the analysis of spatial con-
trast, we aimed at separating the fixations into high-spatial-contrast
and low-spatial-contrast groups while balancing the linear activation
between the groups. For a pair of cells, we therefore sorted all fixa-
tions of the test set by the average linear activation across both cells
and paired neighbouring fixations in this sorted list. This led to 40
pairs (34 for the mouse), and for each pair, we assigned the fixation
with the higher spatial contrast to the high-spatial-contrast group and
the other fixation to the low-spatial-contrast group. To expand the
pairwise correlation (r,,;) into high- and low-spatial-contrast parts,
we split the numerator of the Pearson correlation coefficient so that
rpair = rhigh *lows with

_ Yichigh®G=X)0,-y)
(Nframes -1) Ox Oy

hhigh=

withxandycorrespondingto the responses of the two cells and iindex-
ing the frames of the natural video, the sum here running over the
frames from high-spatial-contrast fixations and N,.s denoting the
total number of frames. Mean (X, ¥) and standard deviation (oy, oy)
values correspond to the length of the entire test part of the video.

Extraction of DS ganglion cells

Toidentify DS ganglion cellsinthe mouse retina, we used drifting sinu-
soidal gratings of 100% contrast, 240 pm spatial period and atemporal
frequency of 0.6 Hz, moving along eight different, equally spaced

directions. We analysed cell responses as previously described®. Cells
with amean firingrate of at least 1 Hzand a direction selectivity index
(DSI) of at least 0.2 (significant at 1% level) were considered putative
DS cells. The DSIwas defined as the magnitude of the normalized com-
plexsum}, rgeiG/Zg rg, with @ specifying the drift direction and ry the
average (across trials) spike count during the grating presentation for
direction 8 (excluding the first grating period). The preferred direction
was obtained as the argument of the same sum. The statistical signifi-
cance of the DSIwas determined through a Monte Carlo permutation
approach®?¢,

Toseparate ON from ON-OFF DS cells, we used a moving-bar stimu-
lus. The bar (width: 300 um, length:1,005 pm) had 100% contrast and
was moved parallel to the bar orientation in eight different directions
with a speed of 1,125 pum s™'. We extracted a response profile to all
bar directions through singular value decomposition, as previously
described®* and calculated an ON-OFF index to determine whether
cellsresponded only to the bar onset (ON) or to both onset and offset
(ON-OFF). Cells with an ON-OFF index (computed as the difference
of onset and offset spike-count responses divided by their sum) above
0.4 were assigned as ON DS cells and were grouped into three clusters
onthe basis of their preferred directions.

Flashed gratings

Depending on the experiment, we generated 1,200 to 2,400 different
sinusoidal gratings with 25 or 30 different spatial frequencies (f), with
half-periods between15and1,200 pm, roughly logarithmically spaced.
Foreach grating, we generated 12 or 10 equally spaced orientations ()
and four or eight equally spaced spatial phases (). Foragiven grating,
the contrast value for each pixel with (x, y) coordinates were generated
according to the following equation:

C(x,y) =sin(2nf (xcosO + ysind) + @)

Gratings were presented as 200 ms flashes on the retina, separated
bya 600 or 800 msgrey screen. The order of presentation was pseudo-
random. We collected spike-count responses to the flashes by counting
spikes during stimulus presentation for the marmoset or 20 ms after
stimulus onset up to 20 ms after stimulus offset for the mouse. We used
tuning surfaces to summarize responses (Extended Data Fig. 6), which
we generated by averaging responses over trials and spatial phases for
eachfrequency-orientation pair. In the mouse recordings, inwhich we
typically collected four to five trials per grating, we calculated sym-
metrized R? values for the spike counts, and we only used cells with
an R? of at least 0.2 for further analyses. In marmoset recordings, we
typically collected one to two trials per grating, and we thus used no
exclusion criterion.

DoG subunits

The subunit grid model consists of DoG subunits, and fitting its param-
eterstodataisfacilitated by an analytical solution of the DoG activation
byagrating. The latter was obtained by considering the grating activa-
tions of both centre and surround elliptical Gaussians on the basis of
previous calculations®®, as described in the following. The DoG recep-
tive field was defined with these parameters: standard deviations o,
and o, at the x and y axis, the orientation of the x axis 6y, the spatial
scaling for the subunit surround k;and afactor determining the relative
strength of the surround w,. Concretely, the response of aDoG recep-
tive field (rp,c) centred at (x,, y,) to a parametric sinusoidal grating
(f,6,9)is

rDoG(fr 9, (o;xo'yo' Oy» oy' HDOG' ksr ws)

=Apo (f; 0y 0y, Oboc ks' wy) x cosOp,g(f, 0, (p:xo,yo)

with the amplitude A, given by



_ 2 2 = 272
ADOG (f; o, ksr ws) —e 2nog6f < _ we 21(ksOpoc) f

with
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OpoG= «/ay sin“(6+ Op,) + 05 cos™(0+0p.c)

The receptive-field phase Op, is given by
N
Opoc(f, 0, 9;X0,3,) =21f x5 +y? cos(@— tan lx—‘:)j +o-T1/2

DoG LN model

We fitted parameterized DoG LN models to the measured grating
responses. The fullmodel combined the DoG receptive-field activation
with an output nonlinearity, for which we chose a logistic function
N(x) = (1+e™) . Themodel response (R), denoting the modelled neu-
ron’s firing rate, was thus given by

R=aN(By,bo6  Voog)

where B, -andy, .are parameters determining the steepness and
threshold of the output nonlinearity and ais aresponse scaling factor.

All model parameters (x,, Y, , 0y, 0y, Opoc, Ky We, By Yoo a) were
optimized simultaneously by minimizing the negative Poisson log-
likelihood, using constrained gradient descentin MATLAB with the
following constraints: o,, 6, > 7.5 um, - /4 < Op,c<T/4,1<k;<6,a>0.
Each trial was used independently for fitting.

Subunit grid model

Wefitted all subunitgrid models with1,200 potential subunitlocations,
placed onahexagonal grid around a given receptive-field centre loca-
tion. The centre was taken as the centre of a fitted DoG model. The
subunits were spaced 16 um apart. Each subunit had a circular DoG
profilewithastandard deviation of o (centre Gaussian) and centred at
(X, )),¢)» and its activation in response to a grating was given by

1(f,0,0; X5 )., 0, ks W) = A (f; 0, ks, ) X cOsO(f, 0, @; X, 3),)

where both amplitude and phase are given by the DoG receptive-field
formulas withg, =0,=0.
The full response model was

Nsub
Rsc= G[ Z WN(Br,+ )’)}

s=1

where N(x) = (1+e™) ! is a logistic function, S and y are parameters
determining the steepness and threshold of the subunit nonlinearity,
N, is the number of subunits with non-zero weights, w; are positive
subunit weights, and G is a Naka-Rushton output nonlinearity
G(x) =ax"/(x" + k") + b, with non-negative parameters@,,, = (a, b, n, k).

Fitting and model selection
We optimized subunit grid models using the stochastic optimization
method ADAM® with the following parameters: batchsize = 64, 8,=0.9,
B,=0.999, £=107%. For the learning rate (1), we used a schedule with
a Gaussian profile of 1 = Nepochs/2 and 6 = Nepoens/5: this led to alearn-
ing rate that was low in the beginning of the training, peaked midway
and was lowered again towards the end. Peak learning rate was set to
Nmax = 0.005. The number of epochs (N,qcns) Was fixed for all cells to
4 x10%/N a1, With Ny, representing the number of all grating pres-
entations used for fitting, which typically resulted in 50-150 epochs.
To enforce parameter constraints during fitting, such as non-
negativity, we used projected gradient descent. We also aimed at regu-
larizing the parameter search in a way that non-zero subunit weights
were penalized more strongly when other subunits with non-zero

weights were spatially close. We therefore introduced a density-based
regularizer that controlled the coverage of the receptive field with a
flexible number of subunits (Extended Data Fig. 6).

Concretely, the cost function we minimized was

1 Nsub w;
~AInL(sg, 16; 0, w) +1 Ywy —
sp s=1 izs Ugj

with N, being the total number of spikes, L the Poisson likelihood, s¢
the vector of all grating parameters used, r¢ the corresponding
spike-count response vector, 8, = (0, k;, w;, B, ¥, ,yc) all the shared
model parameters, andw = (w;, ..., szub) the vector containing all
subunit weights. A controls the regularization strength, which depends
on the pairwise subunit distances d;.

After the end of the optimization, we pruned subunit weights with
small contributions or weights that ended up outside the receptive
field. To do so, we first set to zero every weight smaller than 5% of the
maximum subunit weight. We then fitted atwo-dimensional Gaussianto
anestimate of the receptive field, obtained by summing subunit recep-
tive fields weighted by the subunit weights. The weight corresponding
to any subunit centre lying more than 2.5¢ outside that Gaussian was
set to zero. To ensure proper scaling of the output nonlinearity after
weight pruning, we refitted the output nonlinearity parameters along
with a global scaling factor for the weights.

We typically fitted six models per cell with different regularization
strengths Aranging from107°to 5 x 10™*. To select for the appropriate
amount of regularization, we only accepted models that yielded at
least three subunits and had a low receptive-field coverage (less than
3;seebelow). If no eligible model was fitted, cells were excluded from
further analyses. Among the remaining models, we selected the one
that minimized the Bayesian information criterion, which we defined
for the subunit grid model as

Nsubln(Ndata) - 2]”(1_)

where N, is again the number of subunits with non-zero weights, Ny,
is the number of grating-response pairs used to fit the model and L
thelikelihood of the fitted model. The selected model balanced good
prediction performance and realistic receptive-field substructure.
Note, though, that the actual size and layout of the subunits might not
be critical to obtain good model performance® as long as appropriate
spatial nonlinearities areincluded, and that the subunit nonlinearities
are generally better constrained by the data than the subunits them-
selves (Extended Data Fig. 6).

Parameter characterization of the subunit grid model
Tosummarize how densely subunits covered acell’s receptive field, we
defined ameasure for the subunit coverage. It was calculated as theratio
A/B,where Awas the subunit diameter (40 of the centre Gaussian) and
B was the average distance between subunit centre points. For a par-
ticular cell, the average subunit distance was calculated as the average
over all nearest-neighbour distances, weighted by each pair’s average
subunit weight. If fewer than three subunits had non-zero weights in
the model, no coverage value was computed.

To plot and characterize subunit nonlinearities, we first added an
offset so that an input of zero corresponded to zero output. We then
scaled the nonlinearities so that the maximum value over the input
range [-1,1]was unity. Following offsetting and scaling, we calculated
nonlinearity asymmetries to quantify the response linearity of subunits
as (1-M)/(1+ M), where Mis the absolute value of the minimum of the
nonlinearity over the input range[-1, 1].

Natural images and response predictions
We flashed a series of 220 (or 120) natural images to the retina, as
described previously*. We used images from the van Hateren database,
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whichwere croppedto their central 512 x 512 pixel square and presented
over the multielectrode array at single-pixel resolution. Allimages
were multiplicatively scaled to have the same mean intensity as the
background. Interspersed with the natural images, we also presented
artificial images. The images were generated as black-and-white ran-
dom patterns atasingle-pixel level and then blurred with Gaussians of
eightdifferent spatial scales?, but the corresponding responses were
not analysed as part of this study. Allimages were flashed for 200 ms,
separated by either 600 or 800 ms of grey background illumination.
Images were flashed inarandomized order, and we typically collected
eight trials perimage. Average spike counts were calculated in the same
way asinthe case of flashed gratings, and only cells with symmetrized
R?of at least 0.2 were used for further analyses.

To calculate response predictions for models built with white
noise, we used the output of spatial filters applied to the natural
images. The filters were upsampled to match the resolution of the
presented images and normalized by the sum of their absolute val-
ues. For models obtained from responses to flashed gratings, DoG
receptive fields were instantiated at single-pixel resolution, and the
natural images were then projected onto the DoG receptive fields.
For the subunit model, the subunit filter outputs were passed through
the fitted subunit nonlinearity and then summed while applying the
subunit weights. The performance for each model was calculated as
the Spearman rank correlation p between the model output (with-
out an explicit output nonlinearity) and cell responses to the natural
images®.

Flickering gratings and spatiotemporal DoG LN models

We generated 3,000 (or 4,800) different gratings with 25 (or 30) dif-
ferent spatial frequencies, between 7.5 and 1,200 pm half-periods,
roughly logarithmically spaced. For each grating, we generated 20
orientations and six (or eight) spatial phases. The gratings were pre-
sented in pseudorandom sequence, updated at a 85 (or 75) Hz refresh
rate. Every 6,120 (or 3,600) frames, we interleaved a unique sequence
0f1,530 (or1,200) frames that was repeated throughout the recording
to evaluate response quality.

Wefitted aspatiotemporal DoG LN model to the grating responses.
The temporal filters spanned a duration of 500 ms and were mod-
elled as alinear combination of ten basis functions. The response
delay was accounted for with two square basis functions for each of
the two frames before a spike. The remaining eight were chosen from
araised cosine basis, with peaks ranging from 0 to 250 ms before a
spike.

Concretely, the spatiotemporal DoG model had the form

R=aN(rKc, + kg, + b)

where N(x) = (1+e™) ! isalogistic function, k. and kg, are separate
temporal filters for the centre and the surround, b determines the
baseline activation, and ais a response scaling factor. The vectors r¢
and rg contain DoG receptive-field activations for 500 ms before a
particular frame and were calculated as for the flashed gratings. The
model was fitted with nonlinear constrained optimization, with DoG
constraints identical to the case of flashed gratings and a > 0.

Spatiotemporal subunit grid model

We also fitted a spatiotemporal subunit grid model to the grating
responses. Our strategy was similar to the case of flashed gratings.
We fitted each subunit grid model with 1,200 subunit locations, placed
inahexagonal grid around agivenreceptive-field centre location. The
centre was taken as the fitted centre of the DoG model. The subunits
were spaced 16 um apart. The model response (R) was given by

Nsub
R=G| ) wN(Kc+RKs+Y)

s=1

where w; are non-negative subunit weights, N(x) is a logistic function,
k.. and kg are separate temporal filters for the centre and the surround
shared across all subunits, and y determines the nonlinearity threshold.
We used aNaka-Rushton output nonlinearity G(x) = ax™/(x" + k"), with
non-negative parameters 0,,, = (a, n, k). The vectors r, (r;) contain
Gaussian centre (surround) subunit activations for 500 ms before a
particular frame and for each subunit. The parameters required to fit
DoG subunits are the standard deviation of the centre, the scaling for
the subunit surround and a factor determining the relative strength of
the surround.

We used stochastic gradient descent with the ADAM optimizer
to fit spatiotemporal models. The parameters were the same as in
the flashed-grating models, except for the batch size =2,000 and
Nmax = 0.02. We used the same learning schedule for 7 and the same
regularization to control for subunit density as in the case of flashed
gratings.

Natural video predictions of grating-fitted models

To obtain natural video predictions for models built from flickering
gratings, we instantiated receptive fields, as well as subunit filters, at
single-pixel resolution. Again, we projected video frames on centre
and surround filters separately, convolved each result with the corre-
sponding temporal filter and summed the two outputs for obtaining
the finalfilter output. For subunit grid models, the subunit nonlinear-
ity fitted from the gratings was applied to the linear subunit outputs,
which were then summed with the non-negative weights to obtain
the final activation signal. The training part of the video was used for
estimating an output nonlinearity using maximum likelihood (under
Poisson spiking) for both the DoG LN and the subunit grid models. The
nonlinearity had the same parametric form as in the model fit with
gratings. Unlike the models applied to natural images, in which the
Bayesian information criterion was applied, we here used the train-
ing set to select the appropriate regularization strength by finding
the maximum of the log-likelihood among the eligible models (with
at least three subunits and a receptive-field coverage below 3). If no
eligible model was fitted, cells were excluded from further analyses.
Model performance was estimated for the test set using the coefficient
of determination between model prediction and measured firing rate as
afraction of explained variance (R?). Negative values of R*were clipped
to zero.

To better differentiate DoG and subunit grid model performance,
we selected fixations on the basis of model predictions. For each cell
pair, we selected the 20% of the fixations for which the deviation in
the predictions of the two models, averaged over the two cells, was
largest. For a single cell and a single fixation, the deviations were
calculated as the absolute value of model differences normalized
by the cell’s overall response range (maximum minus minimum dur-
ing the test part of the video) and averaged over all frames of the
fixation. Performance of both models (R?) was then compared to the
frame-by-frame neural response on these fixations and averaged over
the two cells. The selection of maximally differentiating fixations does
not favour either model a priori, because itis only based on how much
model predictions differ and not on their performance in explaining
the data.

Similar to the spatial contrast analysis, we expanded the pairwise
correlation (r,,;,) into linear and nonlinear contributions by splitting
the numerator of the Pearson correlation coefficient so that r,,;, =
T'noniinear T Tinear- FOT @ pair of cells, we sorted all fixations (in descending
order) by the average deviation of model predictions. We assigned
the first half of the fixations to the nonlinear group and the remaining
ones to the linear group.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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been made publicly available at https://gin.g-node.org/gollischlab/
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org/research/vhatdb/full/. Source data are provided with this paper.
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github.com/dimokaramanlis/subunit_grid_model. The modified Kilo-
sort code for spike sortingis available at https://github.com/dimokara-
manlis/KiloSortMEA. The phy software is available at https://github.
com/cortex-lab/phy.
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Extended DataFig.1|Cell typeidentificationin the marmosetretina.
Theretinawas stimulated with abarcode stimulus. Cell responses were then
clustered along with information from white-noise stimulation (receptive field
size, temporalfilter, autocorrelation). a, Responses to the barcode stimulus of
fouridentified clusters for asingleretina. These responses were alignedtoa
seed cell (first row) to show the match. b, Receptive-field mosaics of the four
identified clusters. ¢, Temporalfilters. d, Spike-train autocorrelations (bin size
is 0.5ms). e, Clustering of identified cell types, shown by projectionsinto

two-dimensional parameter spaces. Receptive field area was calculated from
the estimated contours. Time course PCl1and PC2 measure the projections of
the cells’ temporal filters onto the first two principal components of all temporal
filtersinthe sameretina piece. f, Responses of the identified cells (colored
traces) toachirp stimulus (black trace on top, depicting the applied light
intensity over time). PSTHs are calculated with 10-ms bins and normalized to
unitsum for plotting.
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Extended DataFig. 5| Mouse natural movies, pairwise correlations, and
spatial contrast analysis. a, We generated mouse-specific movies by shifting
naturalimagesaccording to horizontal gaze traces recorded from freely-moving
mice. Eachimage was presented for1s (annotated by the bluelines) and displaced
alongacardinal direction that wasrandomly assigned per image. The receptive
field of asample sustained-ONa cell is overlaid on the displayed five sample
images (orderinimage sequence given by the blue numbers). b, Receptive-field
mosaic of simultaneously recorded sustained-ONa cells, with the outline of a
sample cell highlighted. c, Spike-raster of the sample cell for 30 trials of the
stimulusina.d, Pearson correlation coefficient for the natural-movie responses
of ganglion cell pairs asafunction of their distance. Colored lines represent
average correlation for pairs at similar distance (with 95% confidence intervals)
withinthe same ganglion celltype from threeretinas. For reference, black lines
showthecorrelationbetween stimulus pixels. e, Same asd, but for pairs of ON
and OFF ganglion cells. f, Fractional redundancy for cell pairs as a function of
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redundancy under natural movies for cell pairs. h, Responses of two neighboring
sustained-ONa cells to fixations with similar light intensity, but either high
(top) or low (bottom) spatial contrast. i, Pairwise partial correlations, obtained
for high-and low-spatial-contrast fixations, respectively. j, Median differences
between high- and low-spatial-contrast partial correlationsin the data (top) as
well as their predictions from fitted linear-nonlinear (LN) models (bottom). The
measured correlationincreases by spatial contrast were statistically significant
(one-sided Wilcoxon sign-rank test) for transient-ONa (tON«, p =5.5:1077),
transient-OFFa (tOFFa, p=9-10™"), and sustained-ONa (sONa, p =1.4:10%°) cell
pairs, but not for sustained-OFFa (sOFFa, p > 0.99; here, correlations decreased
slightly but significantly) ON vs. OFF transient « (OvOt, p = 0.39) or ON vs.

OFF sustained o (OvOs, p = 0.90) cell pairs. Number of cells (cell pairs)
n=>57(293)/135(1453)/164(2794)/123(1167) for tONa/tOFFa/sONa/sOFFa types,
and n=877/3172 cell pairs of OvOt/OvOs type pairs. Error bars are robust
confidenceintervals (95%), and data are from 8 retina pieces.
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Extended DataFig. 6 | Weight density regularization and ganglioncell
responsestoflashed gratings. a, Responses of amouse retinal ganglion cell
to flashed gratings of different spatial phases. b, Tuning surface summary of
theresponses for the same cell, responses for each orientation/spatial period
pair were averaged over phases and trials. Note that for fitting subunit grid
models, additional importantinformationis contained in the response
differences for different grating phases, whichis not visible in thissummary
response plot. ¢, Subunit layouts from model fits of the sample cell for six
different regularization values. d, Subunit receptive field profile for each fit.
e, Corresponding nonlinearity. f, Parameters were fitted by minimizing the
negative Poissonlog-likelihood (Neg. LL). Training curves were smoothed with
amoving median filter (length of ten points) for plotting. g, Effects of varying

Regularization strength (A)

Regularization strength (A) Cell types

regularization strength onthe cost function at the end of the optimization, on
the number of subunits, on subunit coverage, and on the Bayesian Information
Criterion (BIC), whichwas used to select the best model. The number of
parametersinthe BIC was here given by the number of subunits with non-zero
weights. h, Comparison of the actual, measured tuning surface (top) vs. its
prediction from the SG model (bottom) for four sample cells of the marmoset
retina (same as in Fig. 3), exemplifying that subunit grid models could fit
responses to the flashed gratings reasonably well. Color map asinb. i, Median
values of subunit diameter, number of subunits per cell, and subunit coverage
of receptivefield for theidentified four marmoset ganglion cell types as well as
forunclassified marmoset ganglion cells. Error bars are median + 95% robust
confidenceinterval,and dataare from 3 retina pieces.
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Extended DataFig.7|Cell type analysis of model parameters for the mouse
retina. a, Left: Receptive-field mosaics for the four identified mouse ganglion
celltypes fromasample recording with agood representation of all four types.
For clarity of the display, contours are here shrunk by 20%. Right: White-noise
spatialfilters for the sample cells highlighted in the mosaics on the left. Darker
pixelsinspatial filters denote larger (positive) values. b, Subunit layouts for the
samplecellsina (left), and average spatial profiles (middle) and nonlinearities
(right) of the obtained subunit grid models for all ganglion cells of the
corresponding typeinthe recording. Shaded areas show 95% confidence
intervals around the mean. ¢, Comparison of the actual, measured tuning
surface (top) vs. its prediction from the SG model (bottom) for the four sample
cells), exemplifying that subunit grid models could fit mouse ganglion cell
responses to the flashed gratings reasonably well. Colormap of the tuning

surfacesasin Extended DataFig. 6b.d, Median subunit diameters for all four
types. The values are consistent with previous receptive field measurements
of bipolar cells that provide input to alpha-type ganglion cells*** (40-70 pm).
e, Median numbers of subunits for all types. f, Median coverage of the subunit
mosaics. g, Performances of the subunit grid model (“nonlinear subunits”) and
the LN model (“linear filter”) in predicting responses to naturalimages, calculated
astheabsolute value of Spearman’s p between predictions and measured
average spike counts. Improvementsin model performance by using the
obtained subunits over linear receptive fields can be seen for most cell types
except for sustained-OFFa cells, which typically displayed rather linear subunit
outputs, as well as transient-OFFa cells, which were well-predicted by alinear
receptivefield, as reported previously®®. Error bars in d-g are median + 95%
robust confidenceinterval, and dataare from 8 retina pieces.
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Extended DataFig. 8| Subunit nonlinearities differ between dorsaland
ventral transient-OFFa cells. a, Subunit model parameters for a transient-
OFFa cellmosaicinthedorsal retina. b, Same asa, but forarecording fromthe
ventral part of the same retina. c, Asymmetry in the nonlinearities is evident for
allrecorded transient-OFFa cells. (See Methods for calculation of nonlinearity
asymmetry. Positive asymmetry values correspond to rectification of negative
output by the nonlinearity, negative values to stronger negative than positive
outputs of the nonlinearity).d, The asymmetry in the nonlinearities was related
tothe cells’ sensitivity to spatial contrast (SC), as measured from responses to
naturalimages. Spatial-contrast sensitivity was computed as described
previously®. Negative spatial-contrast sensitivity corresponds to a preference
for spatially homogenouslightintensity inside the receptive field. e-f, The
asymmetry was alsorelated to linear-nonlinear (LN) model performance both
for naturalimages (e) and natural movies (f). Both dorsal and ventral cells had
generally better LN model predictionsif their nonlinearity asymmetries were
closetozero. g, Firing rateresponses (normalized) of dorsal (top) and ventral
(bottom) transient-OFFa cells toamoving bar stimulus, averaged over eight

Response asymmetry Sustained index

different directions. The bars had a positive (ON) contrast and approximately
entered thereceptive field of the cells at the start of the displayed traces and
left the receptive field approximately at the time point marked by the dashed
lines. Theresponsesinthe ventral retinashowed a delayed peak following the
onsetof the bar. This peak may reflect different center-surround receptive
field structures for transient-OFFa cells over the retinal surface. h, Therelative
strength of ONand OFF responsesingwere measured with aresponse
asymmetry index defined as (R, — Ron)/(Rys + Ron), Where R, and R rare the
average responses before and after the bar leaves the receptive field center
(using time windows of 0.9 s, the time that it takes the bar to cross a pointin
space). Thisindex was significantly larger for the dorsal retina (0.67 + 0.31vs.
0.00 £ 0.38, mean +SD, p <107%, two-sided Wilcoxon rank-sum test). i, Moving
bar offsetresponsesinthe dorsal retina were more sustained compared to the
ventralretina (0.26 £ 0.06 vs.0.23 + 0.22, mean + SD, p <107, two-sided
Wilcoxon rank-sumtest). The sustained index was defined as the ratio of the
average response over the maximum responsein the time window (0.9 s)
following thebarleaving the receptive field center. Data from 8 retina pieces.
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Extended DataFig.9|Method comparison with spike-triggered non-
negative matrix factorization (STNMF). a, Receptive-field mosaics froma
single peripheral marmosetretinarecording. Sample cells are marked with red
outlines. b, Summary of responsesto contrast-reversing gratings of different
spatial frequencies (square-wave gratings of100% contrast, reversal frequency
S5Hz, withoneto eight equidistant spatial phases per bar width). Spatial frequency
tuning curves for the first Fourier harmonic (F1; black) and the second Fourier
harmonic (F2; red). Flis calculated as the maximumand F2 as the mean harmonic
amplitude of the responses of the cells over all spatial phases. The error bars
represent the SEM. For all four types, the effect of asuppressive surround is
clear asbothFland F2 components decay withincreasing bar width. Except for
OFF midget cells, the spatial nonlinearity isevidentin the strong F2 component
for small stimulus scales. ¢, Spatial filter from white-noise responses of a
sample cell for each cell type and the corresponding subunit layout, fitted with
flickering gratings. Darker pixelsin spatial filters denote larger (positive) values.
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d, STNMF?®applied toa one-hour-long recording of spatiotemporal white-noise
stimulation with high spatial resolution. STNMF recovers subunits for midget
cells, but here fails for parasol cells, likely owing to the large number of pixels
included for these cells. e, Number of subunits recovered by STNMF for cells of
allfour types. Vertical black lines mark the medians. f, Using responses to the
natural movie, we compared the prediction performance of the subunit grid
modeland asubunit model derived from STNMF. For the latter model, STNMF
subunit outputs were rectified and summed to obtain generator signals.
Summation weights were determined by fitting alinear combination of subunit
filters to match the overall spatial filter, using non-negative least squares.
Generator signals were then related to spiking responses by fitting alogistic
output nonlinearity using the non-repeated part of the natural movie (as for
the subunitgrid model). g, Model performance comparison for midget cells
between the two nonlinear subunit methods. Parasol cells were omitted
because STNMEF failed to recover meaningful subunit layouts.
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Extended DataFig.10 | Method comparisonwith spike-triggered clustering
(STClus). a, Receptive-field mosaics fromasingle peripheral marmoset retina
recording. Sample cells are marked with red outlines. b, Summary of cell type
responses to contrast-reversing gratings. ¢, Spatial filter from white noise ofa
sample cell for each cell type and the corresponding nonlinear subunit layout
obtained by the subunit grid method. Darker pixels in spatial filters denote
larger (positive) values. d, Nonlinear subunits obtained by STClus*® applied
to white-noise responses. The selected number of subunits maximized the
likelihood of avalidation set. e, The log-likelihood for different numbers of
subunits forall cells of thesame type. Error bars are 95% confidence intervals.

f, Number of subunits that maximized the validation likelihood for each cell.
Black bars are medians over cells belonging to the same type. g, We compared
the prediction performance of the two models using the natural movie. STClus
subunitoutputs were exponentiated and summed to obtain generator signals.
Summationweights were determined by the STClus fitting procedure using the
white-noise data. Generator signals were thenrelated to spiking responses by
fitting amodel-specific output nonlinearity*°, using the non-repeated part
ofthe natural movie (as for the subunit grid model). h, Model performance
comparison between the two nonlinear subunit methods.
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Extended DataFig.11|Direction-selective cells show correlated responses
whendrivenby natural movies. a, Temporal filters and autocorrelations of
ONdirection-selective (DS) cells from asingle recording, separatedinto three
groups according to preferred motiondirectioninresponseto adrifting grating
stimulus. Temporalfilters are typically monophasic and autocorrelations
suggest sustained spiking responses. b, Receptive field contours and preferred
motion directions of the three groups of ON DS cells. ¢, Spatial filters from
white noise and subunit layouts obtained from the subunit grid model for three
sample ON DS cells. Note that the subunit map only roughly matches the
receptive-field contour. Darker pixelsinspatial filters denote larger (positive)
values. d, Average spatial profiles and nonlinearities of subunits for the three
groups of ON DS cells, revealing strong rectification. Shaded error bars depict
95% confidence intervals. e, Tuning surfaces of the three ON DS cells fromc,
revealing strong suppression for large spatial scales. Colormap of the tuning
surfaces asin Extended DataFig. 6b. f, Comparison of model fits for ON DS cells
with sustained- (sONa) and transient-ONa cells (tONa) from the same recording.
Compared tothe other two ONtypes, ON DS cells had larger subunit diameters,
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stronger subunit surround weights (wt.), comparable coverage factors, and
larger model performanceimprovement over DoG LN models for naturalimages.
g, Pairwise correlations for ON DS cells from two subtypes (I1and Il from b)
under natural movie stimulation. Cells from subtype Il were excluded because
they had unreliable responses to the movie. Each data point correspondstoa
pair. Theblack line shows the correlation between stimulus pixels. h,Sameas g,
but for ON-OFF DS cell pairs (left). ON-OFF DS cells were clustered into four types
based ontheir preferred directionsinresponse to drifting gratings (right).

i, Forboth ON DS (oDS) and ON-OFF DS (0oDS) cells, one subtype (typelfromb
and type lll from h) showed particularly low decorrelationin our data (colored
circles, arrows), compared to what would be predicted by an LN model (grey
circles). Theseare cells with preferred directions approximately towards the
right.j, Large gaze shifts (> 75 um/frame) in our constructed natural movie
typically caused global movement with astrong rightward component,
approximately matching the preferred directions of cell types with relatively
low decorrelation values. We hypothesize that this prevalence of motionin the
preferred directionled to theincreased correlations of these DS cell types.
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Extended DataFig.12|Contrast sensitivity of marmosetretinal ganglion responses over cells,and data come from the beginning of each recording.

cells. Spikerate responses of individual cells (thin traces) to full-field sinusoidal ~ Bottom:Response range for each cell atthe start of therecording vs. after3to4 h.
modulation of lightintensity (shownschematically ontop) at4 Hzand different  Theresponse range was calculated as the difference between the maximaland
contrast values (2.5t020%). For each contrast, datafromthree recordings minimalfiringrate during the sinusoidal modulation at 5% contrast. Error bars
(3retinapieces) are shown separately. The thick solid lines mark the average aremean + SEM. Dashed lines mark 10 spikes per second (sp/s).
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Data collection  Extracellular voltage signals were acquired with Multichannel Systems amplifiers. Visual stimuli were generated and controlled through
custom-made software, based on Visual C++ and OpenGL. Raw data files and stimulus generation code can be made available upon
reasonable request to the corresponding author.

Data analysis Spike sorting was performed using a modified version of Kilosort (Pachitariu et al., 2016), available at https://github.com/dimokaramanlis/
KiloSortMEA, and curated with the phy software (https://github.com/cortex-lab/phy). All analyses and generation of figures were done with
MATLAB (versions 9.10 to 9.12). Code used to analyze spiking data and fit computational models is available on GitHub: https://github.com/
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All spike-sorted data used for this study are available at G-Node: https://doi.org/10.12751/g-node.ejk8kx (doi: 10.12751/g-node.ejk8kx). The applied natural images
from the van Hateren database are available at https://pirsquared.org/research/vhatdb/full/.
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Sample size

Data exclusions

Replication

Randomization

Blinding

No sample size calculations were used for this study. The sample size (here at least 3 retinas per species; each retina yields an unpredictable,
but large number of recorded cells, typically several tens to hundreds) is consistent with the standards in the field for retinal multielectrode-
array recordings and is comparable to sample sizes reported in similar publications (e.g., Roy et al 2021, Nature 492:409-413; Shah et al 2020,
eLife 9:e45743). The retinal response properties investigated in this study were consistent across different recordings, and the sample size
was sufficient to demonstrate the repeatability of the effects observed in both marmoset monkeys and mice.

For all stimulus-specific population analyses, we excluded individual cells which did not reliably respond to the corresponding stimulus.
Specific exclusion criteria are reported in the manuscript. For marmoset tissue, we only used retinas for which a 5% contrast full-field
modulation at 4 Hz produced at least a 10 spikes/s modulation in the average ON parasol spike rate at the beginning of the recording.

All measurements in the study were performed on multiple cells of each type in multiple animals; cell numbers are reported in each of the
relevant figure legends. There were no unsuccessful replication attempts; results were consistent across all recordings, and alls datasets that
passed the reliability criterion stated above under Data exclusions were included in the final analysis.

The study did not involve any traditional experimental groups and thus there was no requirement for randomization.
The study did not involve traditional experimental groups that could be blinded. Data from all retinal ganglion cells were analyzed with the

same code without selection. The researchers were blind to any group-dependent bias during data collection, because of the laborious offline
analyses required for grouping cells into types.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The study was performed with retinal tissue obtained from adult male marmoset monkeys (Callithrix jacchus), aged 12-18 years, and
wild-type female mice (C57BL/6J), aged 7-23 weeks. Mice were housed in a 12-hour light/dark cycle.The ambient conditions in the
animal housing room were kept at around 21°C (20-24°C) temperature and near 50% (45—-65%) humidity.

Wild animals The study did not involve wild animals.

Reporting on sex The study did not involve sex-based analyses, because previous literature suggests that the electrophysiological properties of retinal
tissue is relatively homogeneous between sexes.

Field-collected samples  The study did not involve collection of samples from the field.

Ethics oversight Experimental procedures were in accordance with national and institutional guidelines and approved by the institutional animal care
committee of the University Medical Center Gottingen, the German Primate Center and by the responsible regional government
office (Niedersachsisches Landesamt fiir Verbraucherschutz und Lebensmittelsicherheit, permit number 33.19-42502-04-20/3458).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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